Magneto-electric multiferroics: designing new materials from first-principles calculations
نویسندگان
چکیده
منابع مشابه
Measurement Techniques of the Magneto-Electric Coupling in Multiferroics
The current surge of interest in multiferroic materials demands specialized measurement techniques to support multiferroics research. In this review article we detail well-established measurement techniques of the magneto-electric coupling coefficient in multiferroic materials, together with newly proposed ones. This work is intended to serve as a reference document for anyone willing to develo...
متن کاملFirst-principles calculations of nonlinear optical susceptibility of inorganic materials
A method for calculations of the frequency-dependent nonlinear susceptibility of inorganic materials is implemented in the velocity gauge using a linear combination of atomic orbitals (LCAO) method within the framework of either the Hartree–Fock approximation or density functional theory. It is based on the standard time-dependent diagrammatic perturbation theory and has previously been applied...
متن کاملAmmonia synthesis from first-principles calculations.
The rate of ammonia synthesis over a nanoparticle ruthenium catalyst can be calculated directly on the basis of a quantum chemical treatment of the problem using density functional theory. We compared the results to measured rates over a ruthenium catalyst supported on magnesium aluminum spinel. When the size distribution of ruthenium particles measured by transmission electron microscopy was u...
متن کاملTight-binding Hamiltonian from first-principles calculations
The tight-binding method attempts to represent the electronic structure of condensed matter using a minimal atomic-orbital like basis set. To compute tight-binding overlap and Hamiltonian matrices directly from first-principles calculations is a subject of continuous interest. Usually, first-principles calculations are done using a large basis set or long-ranged basis set (e.g. muffin-tin orbit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Sciences Reviews
سال: 2019
ISSN: 2365-659X
DOI: 10.1515/psr-2019-0069